

Introduction to Food technology

Spoilage of food

Spoilage of Food

- Chemical spoilage
 - Chem. rxn in food not due to enzyme
 - Predominant in Oil Rancidity
- Biochemical spoilage
 - Enzymatic activity is involved
 - Predominant in Butter rancidity
- Microbiological Spoilage
 - Mold, yeast, Bacteria ..
- Insects and Rodents
- Physical Factors
 - Variation in Temperature, storage
 - Presence of foreign material (Glass, metal..etc.)

Spoilage of Food

- Classification according to ease of spoilage:
 - Non-perishable:
 - No need of processing (rice, sugar, wheat..)
 - Semi-perishable:
 - Need some processing
 - Apple → keep in fridges
 - Perishable:
 - Need processing
 - Vegetable, meat, fish, milk ... etc.

Spoilage of Food

- Indicators of spoilage:
 - Change in appearance (color)
 - Change in Flavor:
 - Smell
 - Taste
 - Change in texture
 - Consistency (Spoiled milk will coagulate when boiled)
 - Illness
 - Ex. Diarrhea after eating spoiled food

Chemical and Biochemical (Flavor)

1. Rancidity: (1/8)

- decomposition of fats, oils and other lipids by
 - hydrolysis Enzymatic or
 - Oxidation Non- Enzymatic,
 - or both
 - generate highly reactive molecules responsible for producing unpleasant and noxious odors and flavors
 - may also destroy nutrients in food.

1. Rancidity: (2/8)

- a) Hydrolysis:
 - Ester linkage (fatty acid glycerol) breakage (lipase)
 - These free fatty acids undergo further auto-OXIDATION. (The fatty acid breaks down into hydrocarbons, ketones, aldehydes, and smaller amounts of epoxides and alcohols.)
 - Source of enzyme:
 - Microorganism
 - Food itself

- 1. Rancidity: (3/8)
 - a) Hydrolysis:
 - Control:
 - Hygiene
 - Refrigeration (< 5°C or freezing at -10° or -20°C)
 - Addition of salt (1→ 3% in butter)
 - H2O reduction (less water → less Microorganism activity → less likely enz. Rancidity in oil))
 - » Ghee (Samneh: 1% moisture) production from Butter
 - Butter (~80-85% fat and 15% water)
 - Rancidity; Butteric Acid (3 -4% of butter) is liberated

1. Rancidity: (4/8)

b) Oxidation:

- Primarily occurs with unsaturated fats by a free radical-mediated process.
- O₂ in atmosphere
 - Attacks double bound in Unsaturated Fatty Acids
 - » Breakage and resulting in free Fatty acid (May be treated by Caustic soda (fish preserved in olive oil))
 - » Thus Acidity increases → Flavor affected

- 1. Rancidity: (6/8)
 - b) Oxidation:
 - Control:
 - In Darkness (avoid UV light)
 - Cool storage
 - Moisture free environment
 - Pro-oxidant free environment (metals)
 - Anti- oxidants (free radical Scavengers→ easily oxidized→ stop its rxns and)
 - » Vitamin E
 - » butylated hydroxyanisole (BHA)
 - » butylated hydroxytoluene (BHT),

- 1. Rancidity: (7/8)
 - c) Enzymatic oxidative rancidity: (Both)
 - Importance in Vegetable processing
 - Especially by freezing procedure
 - Cause:
 - Lipoxygenases enzyme:
 - » iron-containing enzymes that catalyse the dioxygenation of polyunsaturated fatty acids in reaction:
 - » fatty acid + O2 = fatty acid hydro peroxide

- 1. Rancidity: (8/8)
 - c) Enzymatic oxidative rancidity: (Both)
 - Control:
 - Blanching → inactivate enzyme
 - » Vegetables plunged in boiling water for short time then cooled down quickly
 - Use of strong oxidizing agents (that can be flushed easily from food)
 - » Permanganate
 - » sodium hypochlorite (clorox)

Chemical and Biochemical (Appearance)

- 2. **Browning**: (1/3)
- Sometimes desirable (Bread, coffee..)
 - a) Enzymatic:
 - Polyphenol oxidase (POx) create melanins >
 brown
 - catechol (plus O2 with POx)→ Quinone (dark in color)
 - Bananas, apple when cut (Cells are broken)
 - create <u>melanins</u>, resulting in a brown color

2. **Browning**: (2/3)

a) Enzymatic:

- Control:
 - Heating
 - » Cut apples heat till 60°C and dry no change in color (After that non- enzymatic browning)
 - Lower PH
 - » Citric acid (lemon juice on banana cuts)
 - Dip in Sulfur Solution
 - » Either Sulfur reacts with $O_2 \rightarrow SO2$ gas \rightarrow released
 - » Or reacts with sodium and O2→ Na2S2O5 (Sodium meta bisulfite)→ dissolved

2. **Browning**: (3/3)

b) Non- Enzymatic:

- Milliard reaction (Amadori):
- Undesirable in:
 - Drying apples and onions with heat
- Control:
 - Lowering Temperature
 - Lowering pH
 - Sulfering

Chemical and Biochemical (Texture)

- 3. Texture: (1/3)
 - a) Enzymatic:
 - Cellulase:
 - Break Cellulose → Softening of tissues
 - » Result in softening of pickles
 - Source: Mold, bacteria and plant itself
 - » Top of cucumber (the flower side)
 - » Grape leaves inhibit it
 - Control:
 - Hygiene
 - Mold inhibitor like Na Sorbate

- 3. Texture: (1/3)
 - b) Non- Enzymatic:
 - Hard water:
 - High in Calcium ions
 - » Ca²+ replace the Na⁺ ions → lentils, peas too hard
 - Control:
 - Add mono-valent ions → Softer
 - » NaHCO₃ (use it at home)

Introduction to Food technology

Spoilage of food2 - Microbiological

Microbiological Spoilage of Lebanese American University Food

- Microorganisms are also benificial:
 - Molds in Blue Cheese
 - Yeast in bread
 - Bacteria in pickles
- Microorganisms may produce vitamins, commercial chemicals..etc.

Extras

Numbers Of Bacteria

WATER ACTIVITY

 Temperature dependency of the sorption isotherm can be a major problem and often overlooked

Example:

Crackers that experience a temperature rise during transportation

At the same moisture content which would spoil faster? (with higher Temp

WATER ACTIVITY

- Sorption isotherms also explain the level of water binding in a food (i.e. types of water)
 - Type I: Tightly "bound" water (monolayer)
 - Unavailable/Unfreezable (at -40C)
 - Water ion; water dipole interactions
 - Type II: additional water layer (Vicinal water)
 - Slightly more mobility
 - Some solvent capacity
 - Type III: Water condensating in capillaries and pores (multilayer → bulkphase water)
 - More available (like dilute salt solution)
 - Can be entrapped in gels
 - Supports biological and chemical reactions
 - Freezable

WATER ACTIVITY

- Importance of a_w in foods
 - Food stability
 directly related
 to a_w
 - Influences
 storage,
 microbial
 growth,
 chemical &
 enzymatic
 deteriorations,
 etc.

